
The Challenges of Energy Governance in Southeast Asia

Benjamin K. Sovacool
Visiting Associate Professor
Vermont Law School

Presentation to the International Conference on "Regional Energy Governance and Nexus Perspectives: Challenges in the Asia Pacific Region," Doubletree Hilton, Kuala Lumpur, December 5-6, 2012

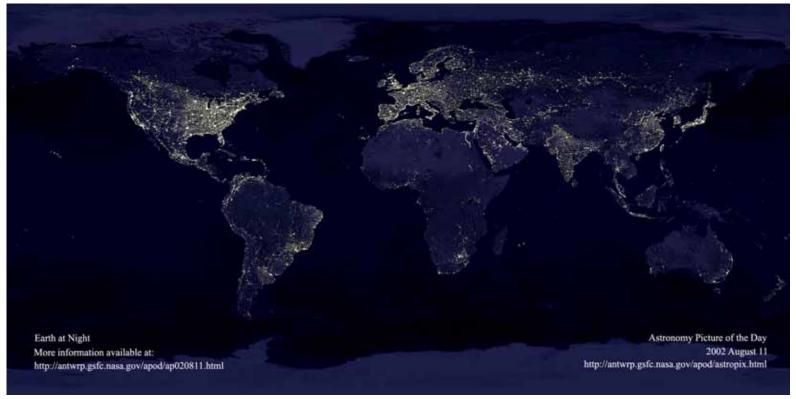
What's "different" about energy governance?
What energy governance challenges are the most significant for the Asia Pacific?
What can we do as researchers?

Key terms and concepts

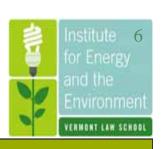
Energy: the socio-technical system in place to convert energy fuels and carriers into services – not just technology or hardware such as power plants and pipelines, but also other elements of the "fuel cycle" such as coal mines and oil wells in addition to the institutions and agencies, such as electric utilities or transnational corporations, that manage the system

Governance:

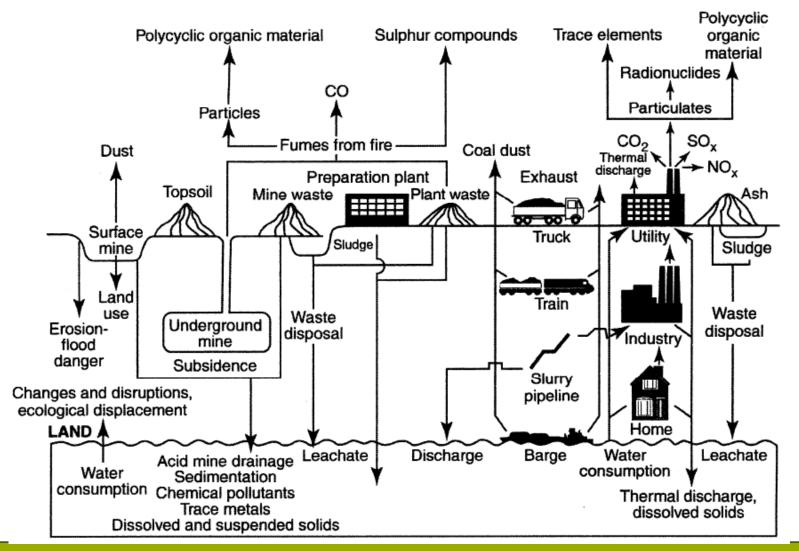
Term		Definition
Governance		Any and all of the myriad ways in which groups of people attempt to solve collective action problems, deal with market failures and ensure the provision of public goods
Global governan	ce	Efforts to deal with the wide range of border-crossing issues involving multiple states and other actors from multiple parts of the world
Global energy go	owernance	Making and enforcing rules to avoid the collective action problems related to energy at a scale beyond the nationstate


(1) Stronger vertical complexity

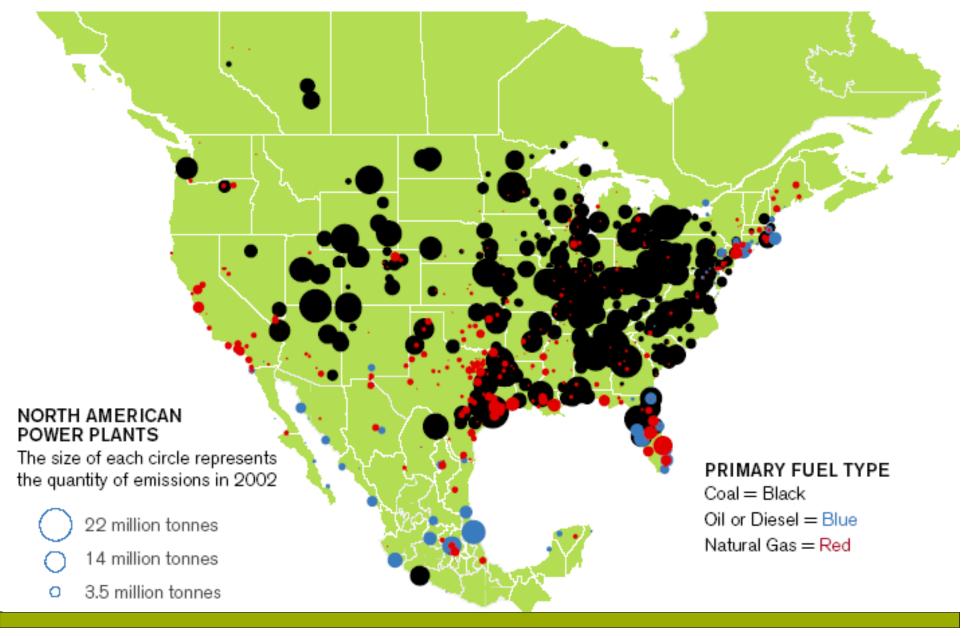
Energy involves multiple technological systems that cut across vertical scales within a country

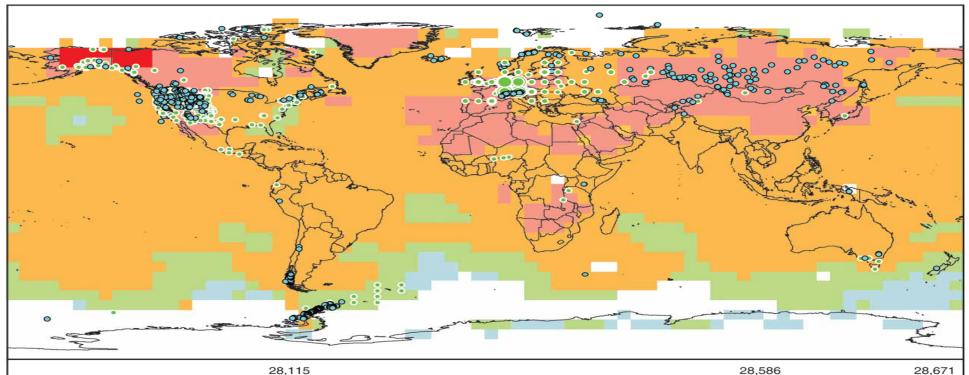

- 170,000 generators provided electricity at more than 75,000 power plants in 2011—about half of them coal-fired, 440 of them nuclear-powered—and they transmitted electricity through roughly 4 million miles of transmission and distribution lines
- 87.8 million barrels of oil produced per day globally backed by more than one thousand refineries and almost one million gasoline stations, to the world's roughly one *billion* automobiles which drive on 11.1 million miles of paved roads—enough to drive to the moon and back 46 times

"Energy is not just another commodity, but the precondition of all commodities, a basic factor equal with air, water, and earth" – EF Schumacher



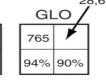
Creates complex governance regimes: a coal system that involves the coal mine and railway as well as the power plant and transmission and distribution network; or a wind farm which requires the production of aluminum, copper, concrete, and fiberglass "upstream" to make the turbines and other components as well as switching stations and interconnection to the electricity network "downstream" from the turbines themselves




(2) More pronounced horizontal complexity

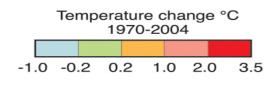
Energy transcends a variety of different scales, it is polycentric

NAM				
355 455				
94%	92%			


١.	AFR					
	5	2				
	100%	100%				

AS				
106	8			
96%	100%			

ANZ				
6	0			
100%	_			



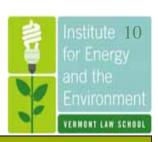
Observed data series

- Physical systems (snow, ice and frozen ground; hydrology; coastal processes)
- Biological systems (terrestrial, marine, and freshwater)

	Europe ***
0	1-30
0	31-100
0	101-800
0	801-1,200
	1,201 -7,500

Physical	Biological	
Number of significant observed changes	Number of significant observed changes	
Percentage of significant changes consistent with warming	Percentage of significant changes consistent with warming	

85


- * Polar regions include also observed changes in marine and freshwater biological systems.
- ** Marine and freshwater includes observed changes at sites and large areas in oceans, small islands and continents. Locations of large-area marine changes are not shown on the map.
- *** Circles in Europe represent 1 to 7,500 data series.

(3) Higher entailed costs

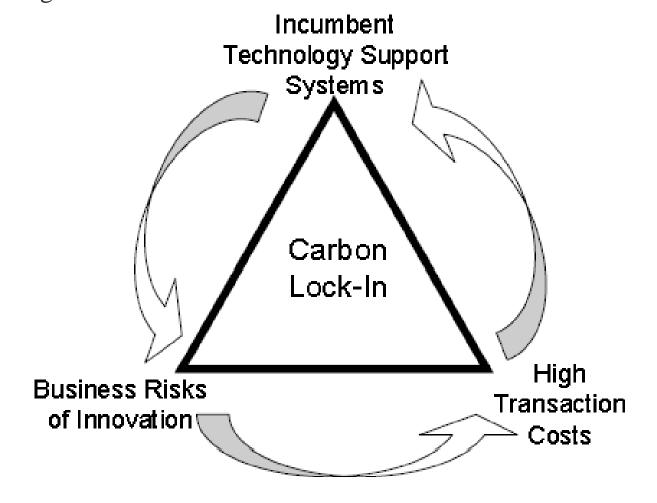
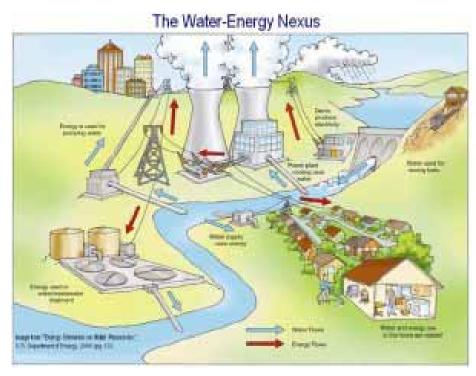
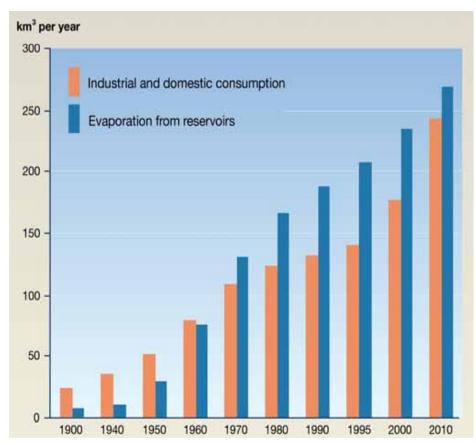

Capital intensive infrastructure, subsidies, intimate connection with industrial manufacturing, externalities

Table 2.5 ▷ Cumulative investment in energy-supply infrastructure in the New Policies Scenario, 2012-2035 (billion in year-2011 dollars)

	Coal	Oil	Gas	Power	Biofuels	Total	Share of GDP
O ECD	204	3 341	3 7 20	6787	20 6	14 258	1.0%
Americas	79	2666	2 337	2852	131	8 065	1.3%
Europe	6	551	924	2797	73	4 35 1	0.8%
Pacific	119	124	460	1 138	2	1842	0.7%
Non-OECD	9 63	6 641	4 854	10 080	149	22 687	2.1%
E. Europe/Eurasia	36	1 239	1 455	1 18 2	4	3917	3.5%
Russia	23	745	987	717	-	2 472	3.5%
Developing Asia	8 4 4	1036	1 4 2 5	6 768	74	10 147	1.6%
China	634	576	577	3 712	43	5 5 4 1	1.3%
India	93	20.2	199	1620	19	2 133	2.2%
Middle East	0	1074	498	577	-	2 149	2.5%
Africa	56	1604	936	745	1	3 342	4.3%
Latin America	27	1688	5 40	808	69	3 132	1.9%
Inter-regional transport	57	259	103	-	22	422	п.а.
World	1 2 2 4	10 242	8 677	16867	357	37 366	1.5%

(4) Stronger path dependency and inertia Greater degree of lock-in

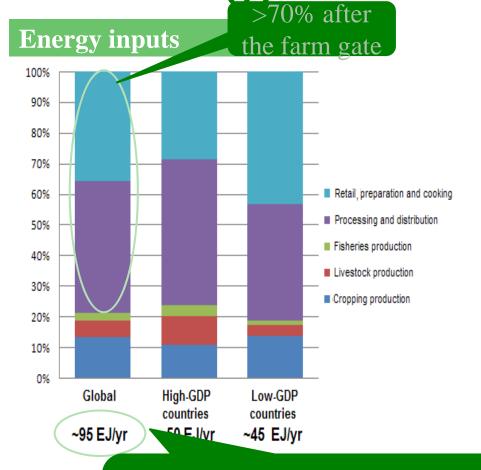


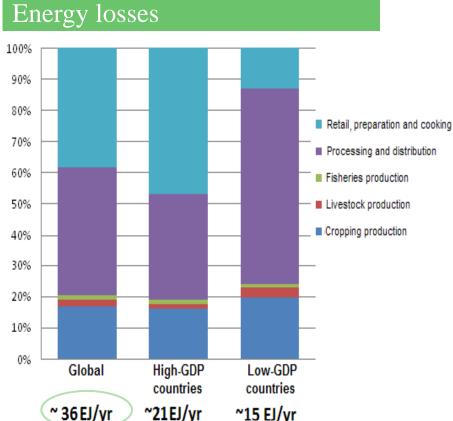

(1) Unclear levels of interference and authority, no global authority, no clear system boundaries

Actor	Role(s)
Central governments	Financing systems/programs through central
	budgets, setting national standards, coordinating
	international air programs
State and provincial governments	Financing systems/programs through state budgets
Local (community) government	Financing systems/programs through local budgets
	and promoting local development
Development agencies	Donating equipment, money, and other resources
	(such as technical capacity or resource assessments)
	to facilitate expansion of access
Nongovernmental organizations	Financing through third-party contributions, raising
	awareness
Private companies	Investment in projects offering adequate returns
Lending institutions	Investment in projects offering adequate returns
Cooperatives	Grouping of producers or consumers with common
	goals, provision of an institutional structure through
	which services can be delivered and paid for
Educational institutions	Investment in human capital
Villagers and end-users	Using and sometimes owning and operating
	equipment

istitute 12

(2) Seamlessness with things like national defense, economic growth, transport and agriculture

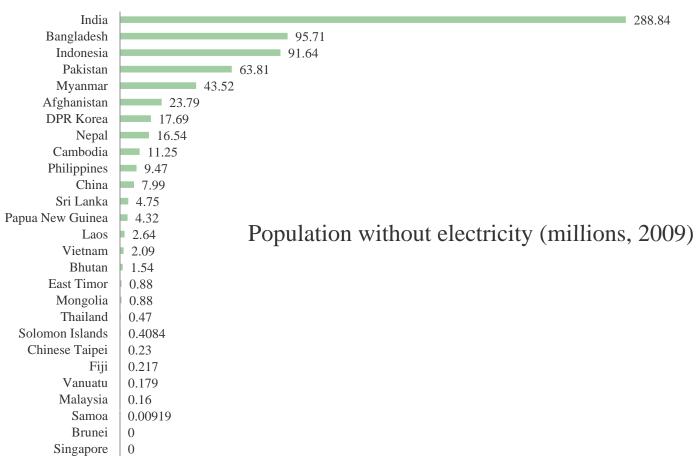




Global Freshwater Evaporated from Dam Reservoirs, 1900 to 2010

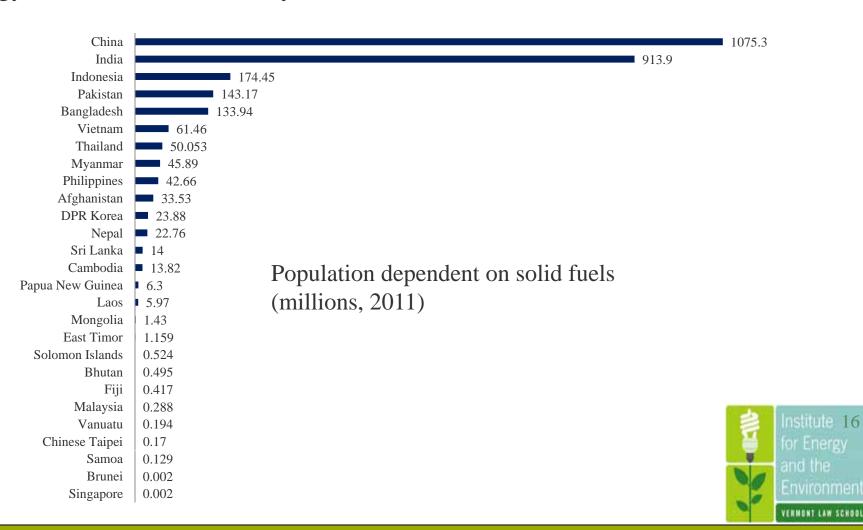
The energy food nexus

Embedded Energy


~15 EJ/vr

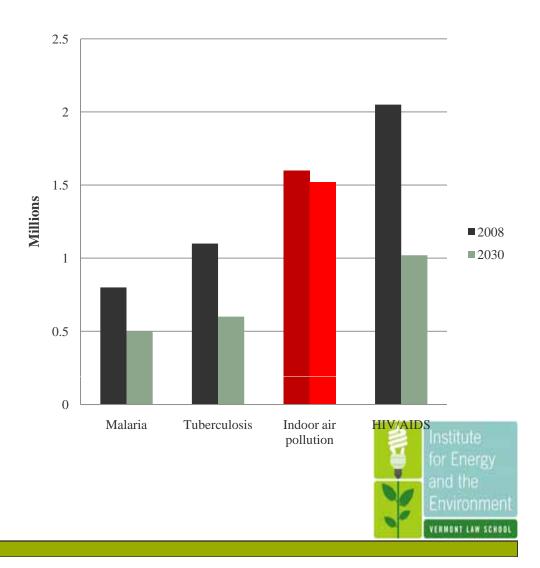
Agrifood chain & energy:

- ~30% global energy use
- High dependence on fossil fuels



(3) Inequity, billions of people that consume large amounts of modern energy, and billions without any

(3) Inequity, billions of people that consume large amounts of modern energy, and billions without any

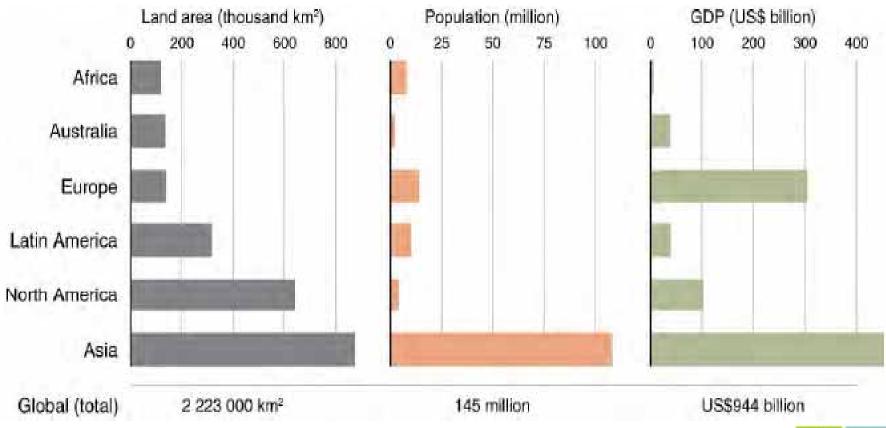

Level	Electricity Use	kWh per person per year	Solid Fuel Use	Mobility	Kilograms of oil equivalent per person per year
Basic human needs	Lighting, health, education, and communication	50 to 100	Cooking and heating	None, walki ng or bicycling	50 to 100
Productive uses	Agriculture, water pumping for irrigation, fertilizer, mechanized tilling, processing	500 to 1,000	Minimal	Mass transit, motorcycle, or scooter	150
Modern society needs	Domestic appliances, cooling, heating	2,000	Minimal	Private transportatio n	250 to 450

VERMONT LAW SCHOOL

Why it's a public health issue:

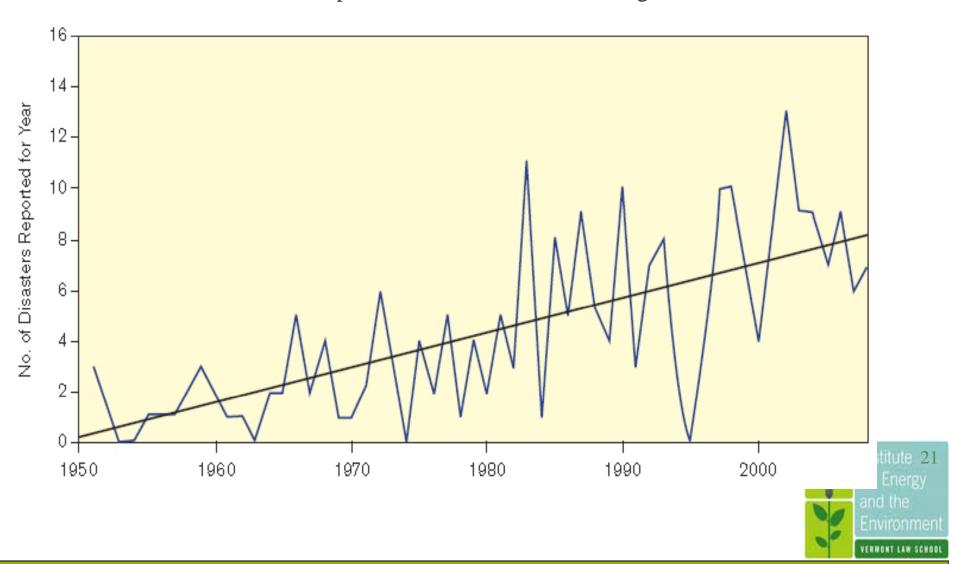
Annual Deaths Worldwide by Cause, 2008 and 2030

Level of Developmen t	Deaths in children under the age of 5	Adult deaths	Burden of diseases (thousands of daily adjusted life years)
High- mortality developing (38 percent of the population)	808,000	232,000	30,392
Lower- mortality developing (40 percent of the population)	89,000	468,000	7,595
Demographically and economically developed (22 percent of global population)	13,000	9,000	550
Total	910,000	709,000	38,537

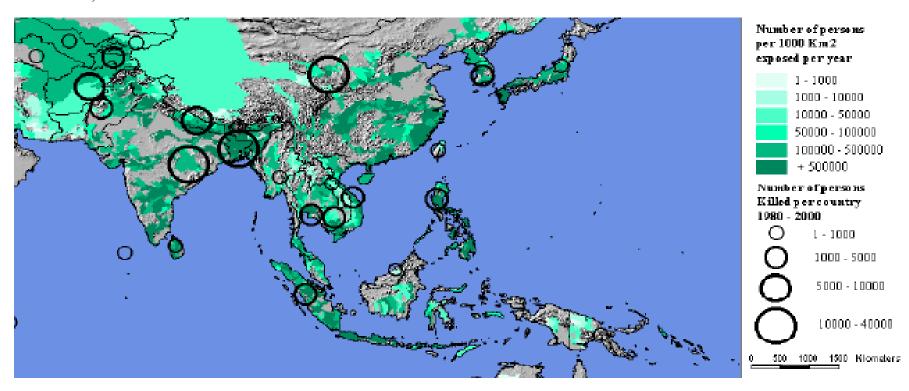

(4) Weak resilience, apparent system vulnerabilities that often cascade

Estimated economic and social impact of disasters in selected Pacific Island countries (1950-2008)

			Average Population Affected		Average Impact on GDP		
No. of		Loses		%		%	
Country	Disasters	(US\$ 2008)	Disaster Years	All Years	Disaster Years	All Years	
American Samoa	6	237,214,770	5.81	0.61	7.76	0.82	
Cook Islands	9	47,169,811	5.13	0.63	3.48	0.43	
Fiji	43	1,276,747,934	5.39	2.74	3.48	0.78	
French Polynesia	6	78,723,404	0.53	0.04	0.31	0.02	
FSM	8	11,915,993	6.20	0.65	0.82	0.09	
Guam	10	3,294,869,936	1.97	0.28	10.13	1.42	
Kiribati	4	0	29.19	1.54	0.00	0.00	
Marshall Islands	3	0	6.40	0.22	0.00	0.00	
New Caledonia	15	69,623,803	0.14	0.03	0.09	0.02	
Niue	6	56,461,688	73.15	7.70	80.88	8.51	
Papua New Guinea	58	271,050,690	0.69	0.36	0.14	0.07	
Samoa	11	930,837,187	21.15	3.71	16.97	2.98	
Solomon Islands	21	39,215,686	2.93	0.98	0.52	0.17	
Tokelau	4	4,877,822	39.70	2.79			
Tonga	12	129,344,561	21.32	3.37	5.76	0.91	
Tuvalu	5	0	3.19	0.28	0.00	0.00	
Vanuatu	36	406,402,255	5.33	2.06	3.78	1.46	


Institute 19

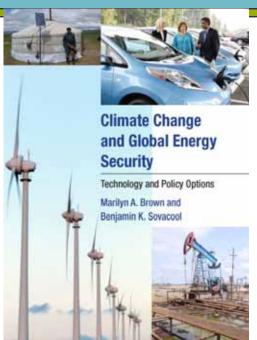
Population, area, and economy directly affected by a one meter rise in sea level

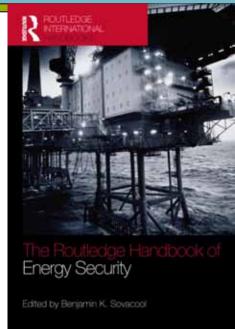


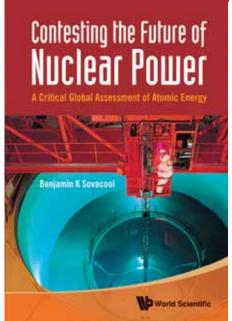
Number of natural disasters reported in the Pacific Islands Region

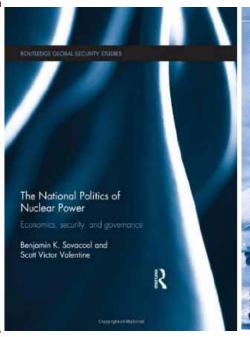
Density of persons exposed to and killed by floods in Asia and the Pacific, 1980-2000

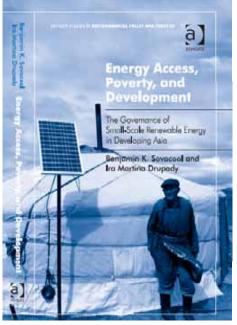
Intensified floods in Thailand could place more than 5 million people at risk and cause \$39 billion to \$1.1 trillion in economic damages by 2050

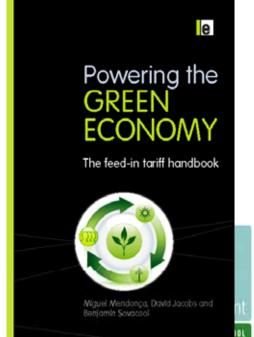



What can we do as researchers?


- (1) Better understand the political economies of energy transitions (at all scales)
- (2) Continue to explore common pool resource issues (how cooperation, trust, and rule enforcement can alleviate problems)
- (3) Conduct rigorous systems analysis (beyond the political or economics to the socio-technical)
- (4) Incorporate neighboring disciplines (public policy, psychology, even communication studies and ethics)







Contact Information:

Benjamin K. Sovacool
Visiting Associate Professor
Vermont Law School
Institute for Energy & the Environment
PO Box 96, 164 Chelsea Street
South Royalton, VT 05068-0444
United States

Email: Bsovacool@vermontlaw.edu

Phone: 802-831-1053

Fax: 802-831-1158

